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‘matical existence properties for such models should in fact be better than for

SIGNIFICANCE AND EXPLANATION
- In a recent paper, Dafermos and Nohel considered a model equation for
nonlinear viscoelasticity. They proved that smooth solutions exist locally in
time and also globally in time for small data. For large data, globally
defined smooth solutions will not exist in general, and formation of shocks is
expected.
In the analysis of Dafermos and Nohel, and in other papers showing

related results, it is essential that the viscoelastic memory function is

absolutely continuous. There are, however, some indications, on both a
theoretical and an experimental basis, that certain viscoelastic materials may

be adequately described by models with singular memory functions. The mathe-

reqular memory functions, since a singular memory function precludes the
formation of shocks. However, the methods used in previous existence proofs

cannot be generalized to singular kernels.
1‘5 ;;_t{\cr’ .
In this paper, we provide an existence theory for such models. MWe - !

approximate the equation by equations with regular kernels, for which

I
DAl 4

existence is known. - We then use energy estimates to show that these

approximate solutions converge to a limit.
.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ON A CLASS OF QUASILINEAR PARTIAL INTEGRODIFFERENTIAL
EQUATIONS WITH SINGULAR KERNELS

W. J. Hruaa1'2 1.3

and M. Renardy
1. Introduction

Many model equations for viscoelastic materials have the form of a quasilinear hyper-

bolic equation perturbed by a dissipative integral term of Volterra type. In the recent
literature, a number of existence results for such models have been proved (2-4], [10~-14],
{17), [21-22), [26]. These papers establish the existence of classical solutions to the
initial value problem locally in time, and (in some cases) globally in time if the data of
the problem are small. For large data, global existence does not hold in general, and
shocks are expected to develop (7], (9], (18-19], (25].

Common to all the works referred to above is the assumption that the kernel in the
integral term has sufficient regularity. We are here intereated in the possibility that
this kernel is singular at 0. Kinetic theories for chain molecules (5], [24], (28] and
some experimental data [15) suggest that this is a realistic possibility, at least for some
viscoelagtic materials. Although some rheological properties of models with singular
kernels have been investigated (see e.g. [1]), there do not seem to be many studies from a
fundamental mathematical point of view.

The only existence theorem for models with singular kernels that we are aware of is a
result by londen [16] concerning the existence of weak solutions. His class of equations
includes the case ¥ = ¢ in the problem introduced below. londen's assumptions require
the viscoelastic memory function to have a singularity which is stronger than logarithmic.

Renardy [23] has studied linear wave propagation. His results show that certain

singular kernels do not permit propagation of singularities and have a smoothing effect.

A o e
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Hannsgen and Wheeler (8] show (for the constant coefficient linear problem on a bounded
domain) that the evolution operator is compact for positive time if and only if the kernel
is singular. This suggests that, if anything, these models should have "nicer" existence
properties than those with regular kernels. However, this also indicates that one cannot
expect the methods of previous existence proofs to extend to singular kernels. These
proofs rely on an iteration scheme that treats the hyperbolic part as the principal term
and the integral as a perturbation. This, of course, works irrespective of the sign of the
integral. 1If, however, singular kernels lead to smoothing, then the reverse sign of the
integral must lead to blow-up, and a local existence theorem cannot hold.

In this paper, we focus on the history value problem

U () = dlu (x,e)), + J5 ] att-T)dtu (k1) ar + £(x,e), o

0 < x<1, =®<tco
u(0,t) = u(1,t}) =0, -w<t<®»w , (1.2)

u(x,t) = v(x,t), 0< x< 1, =<t <0 , (1.3)
which was studied by Dafermos and Nohel [4]. (Closely related problems with regular
kernels have also been studied by MacCamy [17], Dafermos and Nohel [3], Staffans ([26],
Hattori [9], and Hrusa and Nohel [13]. See [12] for a summary of thege works.)

Like Dafermos and Nohel, we assume ¢(0) = $(0) = 0, ¢* > 0, ¢’ > 0, ¢* ~ a(0)y* > 0.
They require that the kernel a is strongly positive definite; for technical reasons we
make the stronger assumption that a 1is positive, monotone decreasing, and convex. While
they assume that a, a', a'' € L‘(O,“), we allow a' to have a singularity at 0, e.g.
at(t) ~-t"%, 0<ac1, as t+ 0.

For definiteness, we shall always consider (1.1) with Dirichlet boundary conditions
(1.2). We emphasize, however, that our local existence proof can be applied without change
for Neumann or mixed boundary conditions or for the all-space problem. We have purposely
avoided the use of Poincaré@ inequalities in our estimates for this reason. The global
result can also be generalized to different houndary conditions. For the case of Neumann
conditions, we need a trivial modification in the statement of the theorem, due to the

possibility of rigid motions which need not decay as t * ®., We do not known how to extend

-=




the global result to the all-space problem. Recent work on this problem by Hrusa and Nohel
[13) makes very essential use of the assumption that the kernel is regular.

It is not easy to quantify the regularizing effect of a singular kernel in general
terms. Roughly speaking, certain types of waves are smoothed, while others are not. For
those waves that are smoothed, the precise degree of smcothing depends crucially on the

nature of the singularity in the kernel. This will be discussed in detail for linear

problems in a future work.

In our treatment, we regard (1.1) as a history value problem with a history which is
asgumed to satisfy the equation and boundary conditions, and a "smooth™ forcing term. This
engures that we satisfy compatibility conditions between the initial and boundary
conditions as well as compatibility conditions between derivatives of the history and
derivatives of the solution for t » 0. It is possible to relax the assumption that the
history satisfies the equation, with the result that derivatives of u may be
discontinuous across t = 0. Formally, we could also replace the history value problem by
an initial value problem if we set JE. = JE_ + J; and incorporate the first part in the
forcing term. This leads to a technical inconvenience making the statement of results
rather complicated. If u 4is a smooth function and the kernel is singular, then the
integral in (1.1) is also a smooth function, but the separate integrals JE_ and J: have
cancelling singularities at t = 0. Thus, if formulated for the initial value problem, our
results would involve a singular forcing term. For an initial value problem with a
singular kernel and mooth forcing term, the solution u will have a singularity in the
time direction as t + 0.

The paper is organized as followa. In Section 2, we prove some preliminary lemmas
concerning the kernel. In Section 3 we prove an existence result for linear problems with
variable coefficients. This is done by approximating the problem by problems with regular
kernels, for which existence is known. We then use energy estimates that hold uniformly as
the kernel becomes singular to show that the solutions of these approximate problems

converge to a limit. 1In Section 4, we establish local existence for the nonlinear problem




by using the results of Section 3 and a contraction argument. Section 5 contains a brie?

discussion of global existence. We notice that once local existence is known, the

assumption a'' e L1

is not essential for the global existence proof of Dafermos and Nohel
and can be avoided by a minor modification.

Our global existence theorem requires the data to be emall. It is conceivable that
for certain singular kernels, global smooth solutions of (1.1), (1.2), (1.3) also exist for
large data. However, we have been unable to verify this.

With the exception of Section 2, subscripts x and t indicate partial differentia-
tion. A prime denotes the derivative of a function of a single variable, and we use the

symbol := for an equality in which the left hand side is defined by the right hand

side. All derivatives should be interpreted in the distributional sense.

Acknowledgement: We thank J. M. Wilson for a helpful discussion.
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2. Preliminaries
This section contains some preliminary results (concerning the kernel a) that will

be used in the subsequent sections. Let H be a complex Hilbert space with inner product
<*,*> and associated norm 1°l, For each b e L1(0,‘), TEe R and u e Lz((d-,T); H),
we sget

Q(u,t,b) = 5 cuts), |2, bls=T)u(t)droas V¢t e (=,T . (2.1)
We use a hat to denote the laplace transform evaluated along the imaginary axis, i.e.

alw) := N e q(t1at vuer , (2.2)

for real and H-valued functions gq. For T € R, h > 0, u:(-=,T] + H, and t € (-»,T],

we employ the notations

Ahu(t) 3= u{t) - u(t~h) ¥Vt e (-=T1 , (2.3)
and
ut(T) = u{t=-7T) ¥ T >0 (2.4)
in particular,
;t(w) o= e ¥Ty(ttrar vuer . (2.5)

The concept of a strongly positive definite kernel will play a central role in our
analysis. We recall that a real-valued function b € L;oc[o'.) is said to be positive
definite (or of positive type) if

[§ wte) [3 ble-Tiw(tiaras >0 wve> 0 , (2.6)
for every we C[0,%); b is called strongly positive definite if there exists a constant
A > 0 such that the function defined by b(t) - Xe-t, t > 0, is positive definite. As
the terminology suggests, strongly positive definite implies positive definite.

Throughout this section, we assume that

a,a' € L‘(O,“), a is strongly positive definite . (2.7)
It follows from (2.7) that a € AC[0,®), a(0) > 0, and"

-

Re a{w) >

VweRrR , (2.8)
W+

*

In fact, for a @ L'(o,w) to be strongly positive definite it is necessary and sufficient
that (2.8) hold for some X > 0.

-5
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for gome constant A > 0. Consequently, Re a is integrable and

1 = - 1
7 ) Re a(w)dw = 2 a(0). (See, for example, [20] for more information on strongly

positive definite kernels.)

1
In our analysis of equation (1.1), terms of the form 1lim =3 Q(Ahu,t,a) will arise,
hi0 h

where it is known a priori merely that u € LZ((-O,T]; H). Of courge, this is not
sufficient to guarantee that the limit in gquestion exists. However, if we know from other

considerations that the limit does exist, some rather useful conclusions can be drawn.

lemma 2.1: let T E@ R and u € Lz((-',le H) be given. Assume that (2.7) holds and that

lim 1 Q(A u,t,a) exists for a.e. t € (—=,T]. Then, for a.e. t € (~»,T],
ht+0 h2 h

a

lim 1—2 Q(4 sut,a) = % al0)rule)1? + 3:7 J” w’re a(m)lut(w)lzdm

-0

h+0 h (2.9)

- e, 7 (0, () dw>
7 <ule), ] (Im a'(w))u (uw .

In particular, each term in (2.9) is well-defined for a.e. t € (-=,T].

Proof: For each h > 0, we have

1 1= . - " 2
h—2~ o(4 u,t,a) = -2’-"-“—2 J_ Re alw)tu (W) = u, ()17 (2.10)

by Parseval's identity. Next, we observe that

a

® =it
Uy (@) = JO u(t-h-1)e ar

L4 -iwo iwh
= Jh u(t-ole e’ do (2.11)

wg

iwh (t-o)e %0 ,

=e u (w) - R Jh

ou

and consequently

1
;3 Q(Ahu,t,a) -
(2.12)

1 i

zwh2

(t-0)e 1 %gr%an .

iwh h
l

™ ~ iwh *
o Re alw)1(1 = e hu (w) + e p

Using the fundamental theorem of calculus and the dominated convergence theorem, we see

Ty

b e Y e = T

R R T AR A T AR ANl 0 T




that

lim — 3 j:_ Pe a(w)1elP Jg u(t-0)e %4084
h+0 2wh .‘
1 ® -~ 2 H
= 57 | o Re atw)lu(t)1%aw (2.13) ?

TR

= % alo)ru(en® .

:
3 ]
(In particular, the limit on the left hand side of (2.13) exists for a.e. t € (~=,T).) ?
The lemma is now immediate if we observe the simple facts that lim ﬁ (1 - eimh) - -fw,
1 iwh - ht0
! lo (1 =e ™| <laj ¥h>o0, and In 3% (w) = w Re a(w). {

It is important to note that the first and second terms on the right hand side of

(2.9) are nonnegative. The next lemma provides a useful estimate for the last term in this

expression.

Lemma 2.2: Agsume that (2.7) holds and let € > 0 be given. Then, there exists a

constant C(€) such that

- ~ % 2 © 2 ~ % 2
1_ . (Im a'(w))u (waul® < € [__ w'Re a(w)lu, (w)1”de
(2.14)
L) - 2
+cle) J_, o (@1%aw ae. te (=T ,

for every T € R and every u € Lz((-ﬂ,T]: H). (No claim is made that the integrals in

(2.14) are all finite.)

Proof: Observe that

-~
p [m 2 @) = /jum D] + / I"‘—:T'—(ﬂ , WFO . (2.15)

‘ Using (2.15) and the Cauchy~Schwarz inequality, we find that for each a > 0,

2

< 4a |2 1o @1 - sup [1m 2% () ]2
[~a,a]
R ! , m'a\-(m) (2.16})
+ z(JAalmm at(w)| Tu (w)1%aw) * (JA“\—“-,——‘ )

- /\' x
1 (Ima (u))ut(m)dul
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where Aa i= (=»,a] u (a,”). Recalling that Im a'(w) = wRe a(w) and Re a is integrable

over (-o,®), the lemma follows from (2.16) for a sufficiently large choice of a.

Combining Lemmas 2.1 and 2.2, and making use of the simple algebraic inequality
2
|aB| < ma? + %; for all n > 0, we easily establish

Lemma 2.3: Assume that (2.7) holds. Then, for each € > 0 there exists a constant C(¢)
such that

lim = 0(A u,t,a) > (4 a(0) - e)tu(t)r?
n+o n2 0 2
(2.17)

2
-cte) S tuer’as ae. toe (=,m
2 1
for every T €@ R and every u @@L ((-»,T], H) for which 1lim — Q(Ah .a) exists a.e.

h+0 h2

in t e (-=,T].

To discuss certain continuity properties of solutions of (1.1), it is important to

- 2 N 2
know whether or not ]__ W Re a(w)lut(w)l dw is continuous in t given that it exists.

For this, we observe that “t-h(w) is generated from ut(w) by multiplying by eimh and

applying the Hilbert transform. The question thus reduces to boundedness of the Hilbert

o - 2
transform in the norm induced by | (1 +u” Re a(w))lu, (w)1’4s. Using Theorem 6.2 of [6)

(p. 255), we find

2
Lemma 2.4: Let TE@ R and u € L ((-»,T); H) be given. Assume that (2.7) holds,
- - -
]_. mzne a(m)luT(m)lzdm exists, and that the "(A,)~condition”

> o ) ¢ (2.18)

1 2 n 1
sup( J (1 + 0 Re a(w))dw) « ( |, ——
1 T ' Tl s 14w Re a(w)

holds, where the sup in (2.18) is taken over all intervals I < R. Then,

- - 2
wzke a(u)lut(w)l 3w exists for all t € T and is continuous in t.

| -

”~~ -
Remark 2.2: Condition (2.18) holds if a'{w) ~ @ a as w + ®, with 0 ¢ a € 1. This is

a-
essentially the case if a'(t) ~ t ! as t * 0. Such kernels are suggested by molecular

%
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theories [5), {24], (28]). In this case, the norm generated by j:u(1 + w2Re a(w))lut(w)lzdn

is equivalent to a fractional order Sobolev norm.

Our next lemma will be used to modify the global existence proof of Dafermos and Nohel

(41,

Lemma 2.5: Assume that (2.7) holds. Then, for each € > 0, there exists a constant

C(e) such that

JE 1B, ar(e-miu(tiarias < e [5_raryrdar + cle)gu,e,a)

(2.19) 1
vte (-1 ,
for every T @ R and every u € Lz((-w,T]t H).
Proof: Taking Laplace transforms, (2.19) reduces to
~ 2 - .
[a¥(w)]° < € + Cle)Re afw) VuweRr . (2.20) "4
- }
~~
This last inequality is immediate since Re a(w) > 0 and 1lim |a'(w)| = 0 (by the s
fufso ;
Riemann-Lebesque lemma). |
[ ] 1

Remark 2.3: If a'' e L1(0,”), then (2.19) holds with € = 0 and C(0) < ®. This

version of the lemma was used by Dafermos and Nohel [4].

*
We now discuss approximation of a by regular kernels. At this point, we assume 1
1
a, a' e L 10,®) ’ {2.21)

a»>»0, a' < 0, a'' » 0 (in the sense of measures);
(2.22)

a'' is not a purely singular measure.

*

The problem of approximating an arbitrary strongly positive definite kernel by "regularized"
strongly positive definite kernels does not appear to be easy. We could base our existence
argument on an approximation method other than approximating the kernel, e.g. finite
differences. If this is done, (2.22) is not needed, but the proofs become much more
complicated. Moreover, (2.22) is a natural assumption from the viewpoint of applications

to viscoelasticity.




As is well known, this implies that a 1is strongly positive definite. (Corollary 2.2 of
[20).) For each & > 0, we define the approximating kernel a, [0,») + R Dby
[
ag(t) = [ o peltlattsé-tidr ¥ t>0 , (2.23)
where o, is a standard mollifier with support contained in [(-8/2, §/2]).

It follows from (2.21), (2.22), (2.23) that for every 6 > 0

a € cro,®), ag >0, aj <0, a3 >0 , (2.24)
.6' a&, l&' e L1(0,.) . (2.25)

and
tagh, < lal , fazl, < a(0) (2.26)

1
where "'1 denotes the norm in L (0,®). {(Of course, hél'1 does not necessarily
remain bounded as § + 0.) It also follows that a, is strongly positive definite for §
sufficiently small and that a; > a pointwise (and in L‘(O,-)) as § + 0. Moreover,

~ R
suplaj(w)| € a(0) for all &> 0, and Re a, * Re a in Lt (®) as & + 0. Therefore, a
weR

simple modification of the proof of Lemma 2.3 yjelds

Lemma 2.6: Assume that (2.21), (2.22) hold and let € > 0 be given. Then, there exist

constants C(E), GO(C) > 0 such that for every § € (0,60(8)]

1lim 15 Q(Ahu,t,as) > (% a(b) ~ E)lu(t)l2
h+0 h
(2.27)

- cte) S tuarn’as ae. te (=m
2 1
for every T @ R and every u € L ((-»,T]; H) such that 1lim = Q(Ahu,t,a) exists a.e.

ht0 h
in t e (~,7T].

In our subsequent use of this material, we shall always take H to be (the complexi-

fication of) L2(0,1)-




3. Linear Equations

In this section, we study the linear history value problem

U (Xet) = alx,tiu  (x,t + ff. a'(t=T)B(x,T)u {x,THAT + £(x,t),
x € {(0,1], t € (==, 7] ,

u(0,t) = u(1,t) = 0, t @ (~-,T) ,

u(x,t) = v(x,t), x e {0,1], t € (-~,0]) ,

(3.1)

(3.2)

(3.3)

where T is a given positive number. We begin by stating an existence result for the case

when the kernel does not have a singularity. There are many such existence theorems in the

literature. (See, for example, [2]), [10), and the references therein.) The particular one

J which we give here has been formulated with smoothness assumptions which are appropriate

for our treatment of quasilinear equations in the next section.
We assume that the coefficients satisfy
- 2
a'ax'ut'uxx'uxt'att'a'Bx'Bt’Bxx'th'Btt eL ((-»,T); L (0,1)) ,
a(x,t) >2a>0 WVxe([01],te((-=-7T] .

Of f and v we require

ol 2 2 2
f,fxlft €L ((~,T7); L (0,1)) NL ((-IT), L (0,1)) ’

£, e 2=, ti0,1)

v,V ,¥v

VLV v
x" Tt xx’ xt’ tt’ xxx’

’

v
xxt

Vo iVer, €L ((==,01; L2(0,1)) n L3((~=,01s r3(0, 1))
xtt/Vtee 001 ’ . . .

In addition, we assume that v satisfies the equation and boundary conditions for

i.e.
vtt(x.t) - a(x,t)v*x(x,t) + }f. a'lt-r)slx,r)v*x(x,T)dr + f(x,t),

x € [0,1), t € (--»,0) ,

v(O,t) - V(‘pt) = 0 s t e (==,0] .

© ey

-fl=

(3.4)

(3.5)

(3.6)

(3.7)

t <0,

(3.8)

(3.9)




Lemma 3.1: Assume that a',a'' e L'(o,-), a and B satisfy (3.4), and that (3.5) holds

for some constant a > 0. Let f and v satisfying (3.6) through (3.9) be given. Then,

the history value problem (3.1), (3.2), (3.3) has a unique solution u with

L 2
“’“x’“t'“xx'uxt’“tt'“xxx'“xxe'“xtt'“ttt @L ((~,Tl; L7(0,1)) . (3.10)

If, in addition,

£, e cclo,mr L0, 1) (3.11)
then the solution has the additional regularity
B et Ut Oeee € CCLO,T11 L2(0, 1)) (3.12)

for positive time.

We have been unable to locate an existence theorem in the literature which has
precisely the same smoothness conditions as Lemma 3.1. fHowever, this type of result is
standard and we omit the proof. For example, a minor modification of the proof of Theorem
2.1 of (4] can be used to establish Lemma 3.1.

We now prove an existence theorem which allows a' to have a singularity at 0. For

this case, we must assume that the memory term satisfies the appropriate sign conditions,

i.e. that (2.21), (2.22) hold and

B(x,t) >8>0 vxe[o01),te (=T . (3.13)

e I OGP ENSPI. S SRR I Ao 7 ¢

Theorem 3.1: Assume that (2.21), (2.22), (3.4), (3.5), (3.13) hold, and let £ and v

satisfying (3.6) through (3.9) be given. Then, the history value problem (3.1), (3.2),

{3.3) has a unique solution u which satisfies (3.10). If, {n addition, (2.18) and (3.11)

hold, then u has the additional regularity (3.12) for positive time.

T T

Proof: Consider the family of approximating problems

ué:)(x.t) - a(x,t)u)(:()(x,t) + 5 aé(t-T)B(x.T)ux)(x,t)dt + £ix,t),

(3.14)
x € [0,1]1, t @ (~»,T) |,

<A




3
u(s)(o,t) - u(c)(1,t) = 0, t e (-1 , (3.15)

u(é)(xlt) - V(xlt)' x € [0,1], t € (=e,0]) v (3.16)

for 6§ > 0, where a6 is defined by (2.23). It follows from Lemma 3.1 that for each

§ >0, (3.14), (3.15), (3.16) has a unique solution u'®’ with u'®?, u’(‘s), uis’, u’(‘i)
&) (& (&) (&) (&) ()

xt © Uet " Uit Ut Ukt Veet

’

L 2
€L ((~»,T]; L°(0,1)).

8§
Our objective is to show that u( ) obeys certain a priori bounds, uniformly in §,
(

that imply the existence of a sequence {u which converges to a solution as

8
Gn + 0. In order to simplify the notation, we suppress the superscript on u‘ ). For the

§ )
n }’
n=1

purpose of deriving such bounds, we set

1, 2 2 2 2 2 2
V := ess - sup Jo(vx YV Y Vit Viext T Ve Ve (Xe8)ax
s€(-=,0]
(3.17)
0 1, 2 2 2 2 2
+ d
+ ] . Jo{vxx Vo F Vet Vet Veep) (Xe8)dxds
F := ess - sup J;{ti + f:}(x,s)dx
se(-=,T] (3.18)
T 1,,2 2 2
e ot + £ + £ Hx,8)anas
1, .2 2 2 2 2 2
r :;:-. ;?p jofa o va va ta +tal
’
(3.19)
2 2 2 2 2 2
+BT +B 4R +B_ +R 4+ Stt}(x.s)dx ’
1, .2 2 2 2 2 2 2
I, :=ess - sup | {a“ +a +af+a° +a° +a° +8
1 s€[0,T] 0 x t XX xt tt
(3.20)
2 2 2 2 2
+B +B + Bxx +B. Btt}(x,s)dx .
and 1, 2 2 2 2
Elul(t) := ess - sup JO{“xxx P Ut “ttt}(x")dx
s€e{0,t] (3.21)
vtete (0,T) ,
and we observe that there exists a constant ) > 0 such that
a(x,t
et) L vyxe (0,1, te (w1 , (3.22)

B(x:t)
by virtue of (3.4), (3.5), (3.13).

An integration by parts in (3.14) yields

s i et v, M g B
.
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(8) t
B m Y T [ agemT[Bu ) (x Tt 4, (3.23)

where

8
Y( )(x,t) = alx,t) - a6(0)8(x,t) . (3.24)

We apply the backward difference operator Ah (in the time variable) to (3.23), thus

obtaining
4 =4 ( & ]+ jt (t=T)A, [(Bu__) l{x,1)dt + A f 3.25)
h et Ah LA W - % ht Pl e (X T h ‘ (3.

Then, we multiply (3.25) by Ah[(ﬂuxx)t] and integrate over [0,1] x (-=,t], t e {0,T).

After several integrations by parts, we divide by hz and let h¢0. The outcome of this

tedious, but straightforward, computation is

2 2 1
ot * Buxtt)(x,t)dx + :iz ;5 Q(Ah((Buxx)t}, toag)

1 (8)
+ jo{BYt U U t Bft“xxt)(x’t)dx

1,1 (8)
3 IO(BY u

<t N3 g 822 _ 3 t8) 2 Al 2
e ot B U T 28 e * 7 Be¥ee
8

+ 8y, ., u

tt Yo xxt (3.26)

- +
B Ut Peet * 2Bueeee * BreYoc et

(8) (8) (8) 2
TP’ Yt T PV Yotaxt T PVt Uk

+ Bf u -8 f

-8 ¢ axa
et~ Befetent T Prefel) (Xo8)axds

a.e. t @ (~»,7] ,

where Q is defined by (2.1) with H = 2(0,1).

1
It is not a priori evident that 1lim = Q(Ah[(Bu ) ],t,ac) exists for a.e.
h+0 h xx 't
t € (-»,T). However, all of the other limits involved in the Qderivation of (3.26) exist

for a.e. t € (~»,T], and consequently so does the limit in question.

Using (3.5), (3.13), (3.24), Lemma 2.6 (with ¢ sufficiently small relative to 1} ),

2
and the algebraic inequality IAB] < nA2 + %; B ¥n>0, we find that the left hand side

of {(3.24) is bounded from below by

faric . s

e
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PR }x, t)ax

u2
- xtt

3 };(

Y P

2
xxt

2 2
ot !t}(x,t)dx

e

1, 2 2
c jo{(ut + B
H., (3.27)

t 1,02 2 22 )
C [ia Jol8%,,, + BLul }(x,8)dxds

vee (~=1), §e (=8,

where C is a positive constant (which depends on A ana B4

Differentiating (3.14) with respect to t and x, and aplitting the convolution

integrals, we obtain

0 1)
Uper T Mpxt ¥ Vex * ft M J-" ‘6“’ T)[Bvxx\: M Btvxx](x,ﬂd‘r
(3.28)
t .
+ Jo agle-t){fu .+ B.u llx,T)dT ,
t o - X = - -
Mox Jo azlt T)[B“xxx](“'\)dT Yeet ~ Mx%ex T Tx
[
- [l ajlt=T)Bv,  + B v (x,T)d (3.29)
- % ag(e-1)(8_u_1(x,T)ar .
08 x e
It follows easily from (3.28) that
1.2 1, 2 2 2.2 2
lo U (Xotlax € 7 ]o(a Wkt T Ol * f i tiax
+ 7a(0)%ess - sup J;(Bzuz e * S:u2 }x,8)dx
s€(0,T] xx xx
(3.30)
2 1,2 2 22
+ 7a(0)" ess - aup [ {B%v. .+ B vl }(x,s)ax
s@(~=,0])
a.e. t € [0,T) ,
Using Gronwall's inequality in (3.29), we obtain, after a simple computation,
1 2 2
Jolau,  J (x,t1ax
-1 1,2 2 2 2 2.2 2
< 6 exp[2a(0)} 'Jess - sup ]o{uxtt tau +f +al0)7p “xx}(x,l)dl
se[0,T] (3.31)

+ 6 exp[2a(0)l-1]ess - sup f;(ﬁzv:x + B:vix}(x'!)dx
se(~=,0) x

a.e. t e (o,T] .
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Combining (3.26), (3.30), and (3.31), and recalling the lower bound (3.27), we

conclude that there exists a positive constant K such that
E(ul(t) < K{F + (1 4 T + Tmvh + ke (14T 0o (192%) |5 E(ul(s)ds

(3.32)
vte(or, §e (0,50] .

(The constant K depends on a, B, A\, and a, but is independent of F, V, Fo, f1, T,
and §.) Gronwall's inequality and (3.32) yield

Eful(T) < K{F + (1 + ro + P1T)V}exp[K'(1+T1)'(T+T3)] (3.33)
for all 3 e (O,GO].

To asgist the reader in following the derivation of (3.32), we show the detailed
estimation of a few typical terms. By the Sobolev embedding theorem, Bi(x,t) < Po for
all x e [0,1), t e (=~,0], and Bi(x,t) < f1 for all x € [0,1], t e [(0,T]. Therefore,
22

1 .t 1
(x,8)dxds| < 3 J__jo{B u

2
+
xUxee ¥ Upgy) (%s8)dxds

t 1
e T Bt Peee

1,0 ,1,,2 2 2
-3 ]d_fo(ﬂ v + vttt}(x,s)dxds

X xtt
(3.34)
1 t.,1,.,22 2
+3 JOJO{Bxuxtt + “ttt)(x’S)dxds
<dr v aedr,+ DEMIGE) vte oM
2 0 2 1 ' *
Next, we observe that
max v2 (£,s) < 11{v2 + V2 }(x,s)ds Vg e (=»,0] (3.35)
xx' ' 0 xx XXX ’ 8 4 ! ¢
Eefo,1)
and consequently
0 2
J_, max Ve (Er8)ds SV . (3.36)
ge(o, 1]
In addition, we note that
t
u  (0t) = v (x,0) + Jo u. . (x,8)ds v xel[o1], el , (3.37)
from which we easily deduce the estimates
1 2 1 2 t 1 2
Jp vextxetiax € 2 [y vl (x,008x + 2t [ [o u_ . (x,8)dxds
(3.38)
<2v + 21%E[ui(t) wte (o, |,
and
2 2
max u__(x,t) € 2V + (1 + 2T7)E[u](t) Vvt e (0,T) . (3.39)

x€e[0,1]




Using (3.36) and (3.39), we find

t 1 1t (1,,2 2 2
1=, Jo Btt“xx“tct(x")dxa'l <3 J-JD(Btt“xx + ug, J(x.8)axds

t

14t 2 1,2 1 t 2
<3 ). max u (£,8) Jo Beptxsodaxds + = [° [0 ul  (x,8)dxds
gefo,1)
1 2 1,2 14,0 ,1 2
< = -
3 J EeT:x1] vxx(E,s)fo Be (x/8)dxds + = ] o Vepp(Xr8)dxds
v (3.40)
1,t 2 1,2 1,¢ (1 2
+ 3 JO max uxx(E,s)Jo Btt(x,s)dxds +y Jo Jo “ttt(x")dXd’
gefo,1)
1 1 2 t 1 ,t
<3 (Fg + NV + P1VT +3 t‘1 (1 + 27°%) }0 Elu) (s)ds + 3 Jo Efu) (8)ds

veeloT .

The other terms can all be handled in a similar manner.

;i;: uiié, u(G) and 0(6)

tt Lt are bounded in

We conclude from (3.33) that u
L.(IO,T]; L2(0.1)) independently of § € (0.601- It follows from (3.38) (and similar
(8) (%) (%) (6) %) ()
inequalities for the other derivatives) that uxx ’ uxt ' utt ’ ux , “t and u are
also bounded in Lu([O,T]y L2(0,1)) independently of § e (0,601. Therefore, there exists
a function u : (0,1] x (==,T] + R, with u=v on [0,9] x (-»,0), and a sequence

@
{Gn}n-I' with 6n +0 as n * =, such that

(Gn) (5n) (Gn) (5n) (Gn) (Gn) (Gn) (Gn)

u Uy My U Y%t Yt Moo Ukt
3.41
(Gn) (Gn) ™ 2 ( )
LI ,uttt + uu . etc. weakly star in L ([0,T]s L7(0,1))

ags n *+ ®, Standard embedding theorems and (3.41) imply

(§ ) (6) (8) (§) (6) (8
n n n n

n
u s 3] A3t s A

+ u,u_,u, ,u
x t xx xt tt Tx e

a__,Uu
t’ xx’ xt’ tt (3.42)

uniformly on [0,1] x (0,T]
as n * ®, It thus follows easily that u satisfies (3.1), (3.2), (3.3).
Suppose that (2.18) and (3.11) hold. To show that the third order derivatives of u
2
belong to C((0,Tls L (0,1)), we argue along the lines of Strauss [27]. We first note
that Theorem 2.1 of (27] implies that Uesex ! Yrext’ Uxtt and Upey A8TE weakly continuous

from (-*,T] to L2(0,1). Then, the basic idea is to show that a certain energy which
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acts like a "variable norm”™ of third derivatives is continuous. This, in conjunction with
the aforementioned weak continuity, will imply the desired strong continuity.

We apply the procedure used to derive (3.26) to (3.1), (3.2), (3.3). We thus conclude
that for a.e. t € (-*,T)], u satisfies (3.26) with a, replaced by a. Using Lemmas
2.1 and 2.4, and the fact that the right hand side of (3.26) is continuous in t, we find

that

11 2 2 1
Hlul(t) 1= 3 JO(BYuxxt: + Bu  Jix,t)ax + lim -3 Q4 ((Bu_ ) 1,t,a)

ht0 h (3.43)

+ J;{SYt“xx“xxc + Bfu . Hx t)ax
is continuous on t. (Observe that H[u] is coercive in u,,, and u.,, and that
tt e C((-»~,T]; Lz(o,l)) by (3.6).) A minor modification of the proof of Theorem 4.2 of
[27] yields '
Ut Uyee @ CLL=,T15 200,10 . (3.44)

Differentiating (3.1) with respect to x and t, and using (3.44), we conclude that

Uy € (10,717 1200, 1)) (3.45)
and

Upee € CU(=,T15 120, 1)) . (3.46)
It is interesting to note that (3.44) and (3.46) hold even without the assumption (3.11).
In particular if v satisfies (3.7), (3.8), and (3.9), it automatically satisfies Vaxt ¢
e c((—=,01; 1%(0,1)). Moreover, if f, bslongs to C((-=,0]: L2(0,1)), then

Vxtt’ Yttt

so does Vyexx® Finally, we note that the a priori bound (3.33) also holds for the "exact

lution” u.
solut -

e

5 Yy T PRI < g, IR 0 - PR TR -




4. local Existence
We now apply the results of the preceding section to establish a local existence

theorem for the quasilinear history value problem (1.1), (1.2), (1.3).

Theorem 4.1: Assume that ¢, ¢ € c3(.)’ (2.21) and (2.22) hold, and that

$'(E) >8>0, 9'(k)>9>0 vEiEeRr . (4.1)
Assume further that £ satisfies (3.6) for every T > 0, v satisfies (3.7), and that
equations (1.1), (1.2) hold (with u = v) for ¢t € 0. Then, the history value problea

{1.1), (1.2), (1.3) has a unique solution u defined on a maximal time interval (-','l'o),

'ro > 0, which satisfies (3.10) for every T < T,. If, in addition, (2.18) holds and
2
fx e c({o,*)s L (011)) ’ (4.2)

then (3.12) holds for every T € (o,-ro). Moreover, if

' eal-lup]1{u2+uz+u2+u2 R
v ) te(-",'-l‘o) 0 x t XX xt tt
! (4.3)
2 2 2 2
. +uxxx+um+uxtt+\ltu}(x.t)dx<' .
P
i then To = =
Proof: For each M,T > 0, let 2Z(M,T) denote the set of all functions
w i [0,1] x (-»,T] + R such that
. 2(0,1) 4
= ] .
WM™t et Voo Vaxt ! YxeeMeee & L (T RO, (4.4)
w(0,t) = w(1,t) = O vt e (-7 , (4.5)
w{x,t) = vi{x,t) ¥yxe[0,1], t e (~,0] , (4.6)
" ! and
b 1, 2 2 2 2
ess ~ sup JO{'xxx Pt Yee * vttt}(x,t)dx <M . (4.7)

? te(0,T]
We note that Z(M,T) is nonempty for M sufficiently large. Henceforth, we tacitly make

this assumption.

-19~

W




It follows from (4.1) that inf (¢'(E)/¥'(£)]) > 0. We temporarily make the stronger

11-) 1
assumption
- $'(E)
vV i= inf ;TTET >0 , (4.8)

which will be removed later. Identifying a with ¢'(wx) and 8 with w'(wx), it
follows immediately from Theorem 3.1 that for w € Z(M,T), the history value problem

U (XE) = @' (W u (x,t) + AR a' (£-T)¥" (w Ju_ (x,7)aT + £(x,t) , o)

x € [0,1], t € (==,T] ,
(1.2), (1.3) has a unique solution u which satisfies (3.10). Moreover, the corresponding
a, 8, and ) can be chosen independently of M and T.
Let S denote the mapping which carries w into the solution of (4.9), (1.2),

(1.3). Our goal is to show that, for appropriately chosen M and T, S has a unique
fixed point in Z(M,T) which is obviously a solution of (1.1), (1.2), (1.3). For this
purpose, we employ the contraction mapping principle and the complete‘ metric o given by

2 - 2

- 1 - - 2
p(w,w) 1= max (J {(w _ =-w_ )"+ (w_=w )+ (w_~=w_)1)Yx,t)dx . (4.10)
te[o,r] 0 xX XX xt xt tt tt

Observe that for w @ Z(M,T), we have

(x,s)ds vxe (0,1], t e [0,T] . (4.11)

t
'xx(x't) = vxx(x'O) + !o Yext

Therefore,

1 2 1 2 t 12
Jo M!Xet)ax € 2 [ vl (x,0)dx + 2t [ [o Wi o (x,8)ds

(4.12)
caw+amt? veerom |,
where V is defined by (3.17), and so clearly
sup ; vix(x,t)dx < 2V + ZHTZ Vwez(MT . (4.13)
te{o,T)
Similarly, the following inequalities hold for all w € Z(M,T):
sup j; w:t(x,t)dx <2v + M, (4.14)

te(o,T]

Completeness of p follows from Rlou lu's theorem and sequential weak star lower gemi-
continuity of the norm in L ({0,T]s L“(0,1)).
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sup w2 (x,t) € 20+ (1 +200m (4.15)

xe(0,1]
te{o, T}
2 2
sup th(x.t) €2V + (1t +2T7)M , (4.16)
x€(0,1]
tef{o,T]
sup v:(x,t) < 2v(1 + ZTz) + (2'1‘2 + OT‘)H . (4.17)
xe{o,1]
telo, T}

The a priori egtimate (3.33) and the above inequalities show that S maps 2Z(M,T) into
itself provided that T is sufficiently small relative to M. From now on, we assume
that T is smal)l encugh so that S maps Z(M,T)} into Z(M,T).

To show that 8 1is a contraction, let M,T > 0 and v.; e Z(M,T) be given, and set

u 1= Sw, ; 1= s;, W o= w-;, U = u-u. A simple computation shows that U satisfies

Uy, = ' (v U+ jg ' (E=TIB' W)U, (x,T)AT + [0 (w ) = ¢' (W )N

tt
(4.18)

+ ] ate-T ¥ =¥t (W )10 (x,TVaT, v x € [0,1], t € (0,7]
Ufo,t) = U(1,t) = 0, ¥ t e (0,T) (4.19)
Ux,t) =0 Vvxe [0,1], e (-=,0] . (4.20)

Integrating the first convolution term in (4.18) by parts, we obtain

Up, = X'(w U+ J; (=TI [¥' (W U1 (x,TIAT + (¢'(w ) - o'(;xn':}'xx

(4.21)
s oAt v) - VIR (x e,
where

X(E) 1= ¢(E) - alO)W(E) VEER . (4.22)

We multiply (4.21) by [v'(wx)vxx]t and integrate over (0,1) x (0,t}], t € (0,T),

performing various integrations by parts and exploiting (4.19), (4.20). This yields

BV e b -




-.:,- J;“"“’x’x""’x"’z Y )u }(x,t)dx + of “’""x)"xx]t""’

1 - -
- -10[0'(wx) - I (v e U (x,t)dx
= Jg WW U (x,8) ST at(e=t) (¥ (v ) = Mu (x,7)ardx

1 2
+ ]; Jo{- VW e Ul - W W U U+ D U U

1 e » - . ' 2
t3 {x (waI (wx) X (wxw‘ (wx)]thuxx (4.23)

+ (9 (w ) - ¢ (w VIV (w )“xxtu
+ 8w - 0"(;x)lﬁ'(le):xxexth)(x,l)dxds
+ J; J; Vv U (x,8) J; a‘(a-t){[v'(wx) - *";x"Gth

) - o"tir'x)liuth}(x,ndmxas veelor .

Using (4.1) and Lemma 2.3 with € sufficiently small, we see that the left hand side

of (4.23) is bounded from below by

1.1 2 2 1

Jolgryu, +35¥ }(x.t)

(4.24)
t 1 2
-c -, Jo b (w Ju_l(x,s)axds Vvt e (0,T) ,
where C is a constant that can be chosen independently of M and T.
It follows from (4.18) that
1 1 2.2 - 2 =2
Jg Vi et < 4 J (8 e )P0 4 (0w - 00 (@ N2 Tl Hix,trax
2 1 2 2
+ 4a(0) max Jo{v'(vx) Ut 0w - ww )2 (x.s)}dx (4.25

se[o,t]
vee(oT)] .
We combine (4.23) and (4.25) and proceed as in the derivation of (3.33). Exploiting the
fact that W = 0 on (0,1) x {(~»,0], we obtain (after a rather long computation) an

estimate of the form
p(Sw,Sw) < P(H,T)exp(T-Q(M,T))D(w,;) v w,; € zZ(mM,T) (4.26)

for every M,T > 0, where P,0 : {0,*) x [0,=) » [0,®) are continuous functions with

P(M,0) =0 ¥M > 0.
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The derivation of (4.26) from (4.23) and (4.25) is in much the same spirit as the

derivation of (3.33). We show the detailed estimation of the first term on the right hand

side of (4.25). For each n > 0, we have

H;w(vx) - 1w )1¥ v du, U (x,£)ax| < B J; U;‘;(x,t)dx
(4.27)

s am™ ) - 0@ ? E gtiae vee o .

If we choose n sufficiently small, the first integral on the right hand side of (4.27)

can be absorbed by the first integral in (4.24). To estimate the last integral in (4.27),

we first observe that by (4:17) and the mean value theorem

o't ) - 0'(;x)jz(x,t) < O(M,T)wi(x,t) vxe(,, e[0T , (4.28)

where &(M,T) := max 0"(5)2 and the max is taken over all £ with 52 < zv(1+21?) +

(2T2+4T4)H- Using the fact that W = 0 on (0,1] % (-»,0], the type of argument used to

derive (4.17) yields
wi(x,t) < sa(r?erd) v xe [0,1], te (o, . (4.29)

Next, we set Y(M,T) := max 0'(5)2 where the max 4is taken over all £ with

£2 ¢ 2v(1421%) + (21%+4T%)M. Then, using (4.13), (4.28), and the fact that u € Z(M,T),

we find

1, = 12, 2 =2
Jo 1870w = %t 1700w )" U (x,t)ax
(4.30)

< GHlT2+ T‘).(H,T)'(H,T)(V + HTZ) vyee[oT .

The remaining steps in the derivation of (4.26) can be carried out in a similar fasghion.

The contraction mapping principle and (4.26) imply that S has a unique fixed point

u € 2(M,T) for a sufficiently small choice of T > 0. It is obvious that u satisfies

(1.1), (1.2), (1.3) on ({0,1] x {(~»,T). The uniqueness statement in Theorem 4.1 is

immediate. If {2.18) and (4.2) hold, the additional reqularity (3.12) follows from Theorem

3.1 and the fact that u satisfies (4.8), (1.2), (1.3) with w = u. The continuation of

u to a maximal time interval (-’,To) with the property that (4.3) implies T, =~ =

follows from essentially the same argument as in [4].
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It is easy to remove the extraneous assumption (4.8). To do so, we construct a

function % @ CO(R) which satisfies

VE) = w(E)  vEe (-2/V,2/v) (4.31)
inf $'(E) > 0, sup V'(E) <= , (4.32)
Eer gem

and we consider sguation (1.1) with ¥ replaced by ;. The preceding argument shows that

the modified history value problem has a unique solution u on (-=,T) for some T > 0.

The Sobolev embedding theorem implies that

sup v:(x,t) <v . (4.33)
xe[0,1]
te(-=,0]

By virtue of (4.31), (4.33), and the continuity properties of u,, u is a solution of the

original problem on some smaller interval (-',;] with T > 0. The additional properties

of u as a solution of the original problem all follow easily.
=




5. Global Existence

The following result is a precise analogue of Theorem 4.1 in Dafermos and Nohel (4).

Recall that x(&) := ¢(§) ~ a{0)¥(E) ¥ E e R.

Theorem 5.1: Let the following assumptions hold:
1
(1) a,a* @ L (0,»), a >0, a* < 0, a'' > 0 (in the sense of measures); a'' is
not a purely singular measure,
3
(i1) ¢,v € C, #(0) = $(0) = 0, $*'(0) > 0, ¥'(0) > 0, x*'(0) > O,
L4 2 2 2
(144) t.ft.fx eL ((-»,%); L (0,1)) NL ((-=,=); L (0,1))
ftt e Lz((_.',), L2(0,1)), and the norms of f, ft’ fx’ ftt in the indicated
spaces are sufficiently small,

(iv) The given history for t € 0 satisfies the equation and boundary condittions
and all derivatives through third order lie in L'((",O]) L2(0,1)) n Lz((-°,01|
t?c0, 1.
Then, (1.1), (1.2), (1.3) has a unique sclution u existing for all t € (- ,») guch
that u and all derivatives through third order lie in L.((-'p')l L2(0,1)) n Lz((-.‘)r
L2(0,1)). Moreover, u and derivatives through second order converge to zero uniformly as

t +®, If, in addition, the (Az)-conditlon (2.18) holds and tx e c([0,=), L2(0,1)), then

third derivatives of u belong to C({0,»}, L2(0,1)).

The proof is essentially a line-by-line copy of the argument of Dafermos and Nohel.
We need only note that in deriving their estimate (3.26) they use Lemma 2.5 with
€ = 0, while we have to use Lemma 2.5 with € » 0 but small. Apart from this simple

change, their proof goes through unaltered.

Remarks:

5.1: In assumption (iv), we did not require smallness of the norms. However, this

smallness is implied by assumption (iii) and the fact that v satisfies the equation

and boundary conditions for t < 0.
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5.5:

Theorem 5.1 applies without essential changes if Dirichlet conditions are replaced by
Neumann or mixed conditions. 1In the case of Neumann conditions, the boundedness and
decay statements apply to u minus its spatial mean value <u> which evolves
according to the trivial equation

d2
—= <u>(t) = <f>(t) .

dtz
The question of global existence for the all-space problem is more difficult. Hrusa
and Nohel [13] gave a proof for regular kernels. This proof, however, makes
1
essential use of the assumption a'' € L (0,%) and does not appear generalizable to

singular kernels.

It would be interesting, if a global existence result could be established assuming
only X' >0 in a a neighborhood of 0 rather than x‘'(0) > 0. Even for regular
kernels, this has been accomplished only for the case x' = 0 which arises in
modelling shear flows of viscoelastic fluids and in models for heat flow in materials
with memory. (See (3], (17], and [26].) The global estimates of Dafermos and Nohel
(4], which, as remarked, can be carried out without assuming a'' € L‘, can also be

1
adapted to X' £ 0, without assuming a'' € L (0,®). However, the hypotheses on

f in this case must be slightly different than those above.

It is conceivable that, for an appropriate class of singular kernels, global smooth

solutions exist even for large data. However, we have not been able to verify this.
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